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Abstract

A great discovery of Hamilton was that R4 had the struc-
ture of a number system, now known as the quaternions
denoted by H. Some of the planes in R4 are complex
planes under the induced multiplication. We found that
the set of such planes is naturally represented by the points
on a sphere, so that sphere is what’s called a moduli space.

Everyone who has taken Linear Algebra is familiar with
the set of 2x2 matrices M2(R), with its two operations,
addition and matrix multiplication. This is what’s called
a twisted form of H, because it too is a 4-dimensional
R-vector space, which becomes isomorphic to H over C.
This suggests it too should be labeled a number system.

LikeH, M2(R) contains a set of planes which are themselves
number systems under matrix multiplication, though here
there are three different types. We constructed a moduli
space for these planes as well. This moduli space naturally
gives a probability distribution for the planes based on their
type.

H =

t + xi + yj + zk :
t, x, y, z ∈ R,

i2 = j2 = −1,

ij = −ji = k



Introduction

We are all familiar with R1 (the line), R2 (the plane), R3

(3-space), and R4 (4-space). Notice that each space contains
many lower dimensional subspaces. For example R4 contains
many 2D subspaces, i.e. planes.

Our study of the quaternions was initially motivated by a
question: The quaternions contain many copies of the complex
plane, is there a way to “see” all copies at once? Such a visual
representation is called a moduli space.

As an example of a moduli space, to “see” the oriented lines
through the origin in the plane, we can identify each line with
its point of intersection with the standard unit circle. In this
way the circle gives us a way to “see” all these oriented lines.
We want to repeat this same idea for the planes in 4D space.

Figure: Moduli Space of Lines in Plane

Commutative Planes in the Quaternions

We started with an attempt to visualize all of the complex
planes inside of H by representing them as points in a moduli
space. We found that the oriented complex planes in H are
naturally represented by points on a sphere, where each point
represents the “i” of a different complex plane.

Moduli Space of Planes in Quaternions

Figure: Moduli Space of C in H

Along with this visual representation, we found that these
planes were shuffled amongst themselves by the inner auto-
morphisms of H. All inner automorphisms of H can be repre-
sented as conjugation by an element of the 3-sphere S3, which
amazingly, is itself a (simply connected) subgroup of H. This
is summarized by the short exact sequence:

1 {±1} S3 SO3 1

Generalized Quaternions and Wedderburn

We first characterized the planes in H, but the construction of
H can be generalized. To study all CSAs over R, we introduce
the generalized quaternions:

Generalized Quaternions

Let F be a field and a, b ∈ F

Aa,b(F) =

t + xi + yj + zk :
t, x, y, z ∈ F,

i2 = a, j2 = b,

ij = −ji = k


Wedderburn’s theorem tells us that every CSA is either a
division algebra or a matrix ring over a division algebra. We
also have a set of isomorphisms between different generalized
quaternions. We can then show that there are only two
classes of 4D generalized quaternions over R, namely:
A−1,−1(R) ' H and A1,1(R) 'M2(R).

Commutative Planes in the 2x2 Matrices

Any two linearly independent matrices in M2(R) span a plane,
and just like in H, the plane may itself be a number system,
this time under matrix multiplication. As in H, we aim to
construct a moduli space for these planes. However, we found
more types of planes, not just C, but additionally the split
plane R × R, and a third, degenerate plane type, which we
call the nilpotent plane.

We can construct individual moduli spaces for the three plane
types based on their characteristic elements (square roots of
-1, nontrivial idempotents, and nontrivial nilpotents, respec-
tively).

Figure: Moduli Space of C in M2(R)

Pictured above is the moduli space of complex planes in M2(R).
Each point not on the y-axis represent one such complex plane.
The two halves represent two orbits under the (transitive) con-
jugation action of the simply connected group SL2(R).

Figure: Moduli Space of R× R (Left) and Nilpotents in M2(R) (Right)

Similar to the complex planes, the nilpotent planes form two
orbits under the action of SL2(R). In contrast, the copies of
R× R form a single orbit.

Finally, we combine these three moduli spaces into a single
moduli space representing all three types of planes. This is
summarized by a short exact sequence analogous to the one
that appears for the quaternions:

1 {±1} SL2(R) PSL2(R) 1

Moduli Space of Planes in 2x2 Matrices

Figure: Moduli Space of Planes inside M2(R)

In the sphere moduli space above, each color corresponds to a
different type of plane. Therefore this moduli space defines a
probability distribution for the different types of planes
inside of M2(R), based on the ratio of surface areas. That is,
if we were to pick a plane at random, the probability that it
would be C, R× R, or nilpotent would be 1− 1√

2,
1√
2, and 0

respectively.

Conclusions

We determined that the set of all complex planes in H are
naturally represented by the points on a sphere. We discovered
3 types of planes in M2(R), whose union is all of M2(R). As
in H, we found that each plane is naturally represented by
the points on a sphere, so that again the sphere is a moduli
space for the planes of M2(R). The three plane types take
up different areas on the sphere, and determines a probability
distribution for the three plane types.

Further Work

1 Give a constructive proof of Wedderburn’s Theorem for
the generalized quaternions over an arbitrary field.

2 Investigate the structure of commutative subalgebras of
generalized quaternions over Q, Qp, and finite fields Fpn.

3 Establish a unified theory for the structure of
commutative subalgebras of the generalized quaternions
over arbitrary fields.
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